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Setting

f yz

timetime
Examples

• Population growth/diversity as a function of resources

• Material fatigue as a function of stress

• Global climate as a function of greenhouse gas emission
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Background & Notation

• Deterministic computer models

• For scalar-valued output and vector-valued input:

yx = f(x), x ∈ ∆

• “Meta-model” or “Surrogate” based on a prior (pre-data)

Gaussian Stochastic Process (GaSP) indexed by input:

E(yx) = µ Var(yx) = σ2

Corr(yx1
, yx2

) = e−θ×D(x1,x2;w) = e−θ
∑

i
wi×d(xi

1,x
i
2)

• View D as a weighted distance between x’s; positive correlation

decreases as distance increases.
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• For:

– an experimental design: X = {x1,x2,x3, ...,xN}
– resulting data (outputs): y

– specified µ, σ2, θ

• output prediction at x0 proceeds via the conditional GaSP as:

ŷx0
= E(yx0

|y) = µ+ r′0XR−1XX(y − µ1)

se(ŷx0
) =

√
Var(yx0

|y) =
√
σ2(1− r′0XR−1XXr0X)

where {r0X}i = Corr(yx0
, yxi

), and {RXX}ij = Corr(yxi
, yxj

)

• e.g. Sacks et al. (1989), Currin et al. (1991), Santner et al.

(2003).
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• Example:
(x1, x2) (.2, .2) (.2, .8) (.8, .2) (.8, .8) (.5, .5)

y 9.0 9.0 9.0 12.0 10.0

– µ = 10, σ2 = 3

– D(x1,x2; w) =
∑2
i=1 wi(x

i
1 − xi2)2, θ = 1, w1 = w2 = 1:

conditional mean, y−hat
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Vector Inputs & Functional Outputs

• Now

yx(t) = f(x, t), x ∈ ∆, t ∈ [0, T ]

• As yesterday, to facilitate things, define a time-grid:

G = {τ1, τ2, τ3, ..., τM}, 0 < τ1 < τ2 < τ3 < ... < τM ≤ T

yx = f(x), x ∈ ∆

• GaSP: If we restrict the structure to be the same at each x:

E(yx) = µ Var(yx) = Σ

• Conte and O’Hagan (2011) discuss two approaches to modeling

covariances across x-space:
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1.) “Multivariate Output” (or MO)

• Cov(yxi
,yxj

) = e−θ×D(x1,x2;w) ×Σ.

• This treats the covariance as separable, factoring it into

components associated with differences between x vectors, and

output components.

• C & O’H discuss a special case of this, “Time Index” (or TI) that

adds structure suggested by outputs that are continuous functions

of time:

{Σ}i,j = σ2e−φ×d(ti,tj)

• Implications:

– At any x and t, the correlation between yx(t) and yx(t+ δ) is

the same for any fixed δ

– At any t, the correlation between yxi(t) and yxj (t) is the same
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2.) “Many Single-output ... ” (or MS)

• Cov({yxi
}r, {yxj

}s) =

 σ2e−θ×D(xi,xj ;wr) r = s

0 otherwise

• Implications:

– At any x and t, the correlation between yx(t) and yx(t+ δ) is

zero for any δ 6= 0 (much stronger assumption than MO/TI)

– The correlation between yxi
(t) and yxj

(t) can be different at

different t (weaker assumption than MO/TI)

• In the form given here, TI has only one more parameter than MS.

• Using M output values for each of N model runs, the

computational effort for parameter estimation is driven by the

order of the correlation matrix:

– TI: One unified model, kronecker-factors of order M and N

– MS: M independent models, each of order N
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Functional Inputs & Outputs

• Morris (2012), a further development of the MS idea.

• Input function over time:

z(t), t ∈ [0, 1]

• Output also a function of time, with yτ potentially influenced by

z(t) with t ≤ τ :

yτz = f(z(t), t ∈ [0, τ ]) τ ∈ [0, T ]

• GaSP:

E(yτz ) = µ(τ) Var(yτz ) = σ2(τ)

Corr(yτz1 , y
τ
z2) = exp{−θ

∫ τ
0
wτ (τ − t)× d(z1(t), z2(t))dt}

= exp{−θ ×D(z1, z2;wτ )}

• Integral generalizes sum in product correlation for vector-valued x;

now a weighted distance between functions over [0, τ ].
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• Here, I’m using wτ (τ − t) = exp{−β(τ − t)2}, suggesting a belief that

at any time, output is most sensitive to “recent” values of the input

function.
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• Other forms would be more appropriate, for example, for models in

which early inputs are most critical, and the system “solidifies” over

time to be less influenced by z (e.g. some chemical reactions).

• In any case, wτ must be non-zero over [0, τ ] to guarantee non-zero

distance between distinct z1 and z2.
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• As with MS, model (yτ1z1 , y
τ2
z2 ) with τ1 6= τ2 as independent.
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Inference

• Define a time grid for output modeling and prediction:

G = {τ1, τ2, τ3, ..., τM}, 0 < τ1 < τ2 < τ3 < ... < τM ≤ T

• Experimental design:

Z = {z1, z2, z3, ..., zN}

• Resulting data:

y1 y2 ... yN ← organized by Z

y1 y2 ... yM ← organized by G

• Log likelihood ∝:

−
∑M
m=1

{
N × ln(σ2(τm)) +N × ln(|Rm|)

+ (ym − µ(τm)1)′R−1m (ym − µ(τm)1)/σ2(τm)
}

where {Rm}ij = exp{−θ ×D(zi, zj ;wτm)}
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• Parameters: θ, and

µ(−) σ2(−) wτ (−)

each over [0, T ], assigned a reasonable parametric form.

• For known parameters, output prediction for input z0 at time τm

is:

E(yτmχ0
|y) = µ(τm) + r′0,mR−1m (ym − µ(τm)1)

Var(yτmχ0
|y) = σ2(τm)[1− r′0,mR−1m r0,m]

where {r0,m}i = exp{−θ ×D(z0, zi;wτm)}

• For unknown parameters:

– empirical Bayes: Estimate from data (typically via maximum

likelihood) and treat as known

– full Bayes: Assign priors, incorporate parameter uncertainty
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Example: A “Small” Model

• Model of marrow stem-cells, Jones, Morris & Young (1991):

– input = time-rate of ionizing radiation exposure

– output = quantity of normal, injured, and killed cells as

functions of time, t ∈ [0, 1000]
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Example: Experiment

• N = 5 runs of the model and resulting output (normal cells):
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• Output prediction at G = {400, 450, 500, ..., 1000}, with

wτ (τ − t) = exp{−β(τ − t)2}

• “Gaussian” correlation form (i.e. weighted L2 distance between

z’s):

D(zi, zj ;wτ )} =
∫ τ
0
wτ (τ − t)(zi(t)− zj(t))2dt

• Bayesian prediction of y at times in G, using independent priors:

– θ ∼ Gamma(mean=std.dev.=0.02)

– β ∼ Gamma(mean=std.dev.=0.02)

– at each τ ∈ G independently, µ uniform over (−∞,∞)

– common σ2 for all τ ∈ G, with density inversely proportional

to its value
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• Predict output for:
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Experimental Design

• Select Z so that Var(yτz0 |y) is small for all τ ∈ G and all z0 of

interest.

• Predictive D-optimality/Entropy optimality minimizes a summary

measure of this across all z(t) 6∈ Z.

• Johnson, Moore, Ylvisaker (1990) showed that for vector-valued

inputs x, as correlations become weak (θ large), maximin distance

designs are optimal in this sense:

Pick X to maximize: φ = minxi,xj∈X D(xi,xj ; w)

• In our case, if σ2(τm) = σ2, generalization leads to:

Pick Z to maximize: φ = minzi,zj∈Zminτ∈G D(zi, zj ;wτ )
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Example: Rerun with Optimal Design

• Input functions of interest: z∗(t) = r1
s21+(t−t1)2 + r2

s22+(t−t2)2

r1, r2 = 1, 2, 5

s1, s2 = 100, 200, 500, 1000, 2000, 5000

t1, t2 = 200, 300, 400, ..., 800

each normalized to total dose of 200:

z(t) = 200× z∗(t)/
∫ 1000

0
z∗(u)du

• Exposure received along a linear path passing within distances s1
and s2, at times t1 and t2, of two point sources of relative

strength r1 and r2.

• 9072 z(t)’s.

• Construction algorithm: Repeated “backward elimination,” from

an initial random sample, of z’s that are closest to others.
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• N = 5 runs of the model and resulting output:
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• Predictions:
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Maximin Distance-Optimal Designs

• Morris (2014)

• 0 < z(t) < 1

• t ∈ [0, 1]

• For all τ ∈ G,

– wτ (τ − t) > 0,
∫ τ
0
wτ (τ − t)dt = 1

– D(zi, zj ;wτ ) =
∫ τ
0
wτ (τ − t)(zi(t)− zj(t))2dt

• Theorem:

1. N = 2: maximum φ = 1

2. N = 0 mod 4: maximum φ = 1
2

N
N−1

• Proof is by construction, and requires z(t) to jump between 0 and

1 O(N ×M) times! (So the main practical value of this result is

the bound, not the construction)
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Example

• G = {0.4, 0.5, 0.6, 0.8, 1}

• wτ (τ − t) = 2t/τ2

• N = 8

• zi(t) values determined, for example, by regular 27−4 fractional

factorial design, with “change points” at:

0.0 0.2 0.4 0.6 0.8 1.0

● ● ● ● ● ● ●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
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Concoluding Remarks

• In practice, other distance measure may be more appropriate:

0 1

0
1

t

z

0 1

0
1

t

z

• Still, “distance based” design ideas popular with GaSP models can be

used.

• The approach easily generalizes to

– multiple time-series inputs, or mixed time-function and scalar inputs

– functions of both time and space ...
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For N = even, G = {τ1}:

• Find 0 = t01 < t21 < t31 < ... < tn−21 < tn−11 = τ1 that evenly divide

the integral of wτ1 :∫ t11
0
wτ1(τ1 − t)dt =

∫ t21
t11
wτ1(τ1 − t)dt = ... =∫ τ1

tn−2
1

wτ1(τ1 − t)dt = 1
n−1

• Z such that within each of [0, t11), [t11, t
2
1], ..., [tN−21 , τ1]

N/2 of zi(t) = 0

N/2 of zi(t) = 1

maximize total inter-z distance:∑
i<j

∫ τ1
0
wτ1(τ1 − t)(zi(t)− zj(t))2dt = (N2 )2

• In particular ...
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For N = 0 mod 4, G = {τ1}:

• Let Z be the n× (N − 1) design matrix for any balanced,

orthogonal, main-effects-saturated, 2-level design, with coding

levels 0 and 1, e.g. for N = 4

Z =


0 0 1

0 1 0

1 0 0

1 1 1


• For Z s.t. zi(t) = Zij for t ∈ [tj−11 , tj1] is Mm-optimal with

φ = 1
2

N
N−1
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For N = 0 mod 4, G = {τ1, τ2, τ3, ..., τM}:

• Define tmj , m = 2, 3, ...,M , j = 1, 2, ..., N − 2 s.t.∑m
k=1

∫ tj+1
k

tj
k

wτm(τm − t)dt = 1
N−1 , j = 1, 2, ..., N − 1

• Extend 0/1 pattern used in [0, τ1]:

Z s.t. zi(t) = Zij for t ∈ [tj−1k , tjk], k = 2, 3, ...,M

• D(zi, zj ;wτ ) is the same for all pairs of input functions and τ ∈ G

• → Z is Mm-optimal with φ = 1
2

N
N−1


